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Abstract

The theory of shakedown is applied to obtain an upper estimation of LCF lifetime of structures. A model of elastic
viscoplastic material similar to the Perzyna one with isotropic strain hardening and isotropic damage is adopted.
Assumptions: viscoplastic strain rate is proportional to the access of the yield function over zero; the rate of damage
evolution is equal to a function of hardening and damage parameters with the coefficient of fluidity, as a factor of pro-
portionality; damage process is coupled with the viscoplastic deformation process; the hardening parameter is equal to
accumulated viscoplastic deformation. The yield surfaces form a family of self-similar surfaces with the diameter as the
parameter. The shakedown condition of the Melan type is formulated relatively to the initial yield surface. Features of
the stress path lead to an equation with min—max problem of the mathematical programming in the left side, which
determines a safe value of the virtual residual stress. The equation provides an opportunity to compute the maximal
value of the strain hardening parameter possible under the prescribed loading program. This value allows to obtain
an upper estimate to safe work time of the structure, which results in a sufficient condition of the structure integrity
during the prescribed time period. An example of the developed theory application to resolve various problems arising
from designing of structures is considered.
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1. Introduction

The problem of direct estimation of low cycle fatigue lifetime is still topical. A large number of papers
devoted to this problem confirm this assertion. However, as far as the authors are informed, pure theoret-
ical methods based on Solid Mechanics are absent.

The paper aims at developing a theoretical method for directly estimating the LCF lifetime of metallic
structures subjected to static cyclic mechanical loading under elevated temperature. Under these conditions,
the strength of the structural materials in the domain of irreversible deformation depends on the rate of
deforming. Such material behavior is usually modeled by viscoplastic constitutive material models. (See,
for example, Chaboche, 1977; Lemaitre and Chaboche, 1990).

Polizzotto (1995) considered structures of elastic viscoplastic material models with dual internal vari-
ables, thermodynamic potential and temperature-dependent material parameters, as subjected to variable
mechanical and thermal loading. The conditions of existence of steady-state responses (elastic/inelastic
shakedown) of such structures and some of their features were investigated.

In this paper, a variant of elastic viscoplastic material model by Perzyna (1974) generalized to account
for isotropic strain hardening and damage is taken as the base for investigation. As in Perzyna, the rate of
viscoplastic strain is assumed to be proportional to the excess of the current yield function value over zero.
Due to this property, the notion of elastic shakedown is readily extended to the adopted material model, as
the viscoplastic deformation does not occur, if the current yield function is negative or equal to zero.

The theory of shakedown is applied to resolve the problem to be sought. An extension of the static elastic
shakedown theorem to damaged materials was developed in Druyanov and Roman (2002). Here, a novel
formulation of the theorem, as applied to adopted material model, is given.

Damage process is assumed to be coupled with viscoplastic deformation process: it is in progress, if and
only if the viscoplastic deformation is progressing. The local failure of the material occurs, when the dam-
age parameter reaches its critical value, which is considered as a material parameter. The corresponding
time instant could be named as the critical time.

The rate of damage evolution is taken as equal to a function of hardening and damage parameters with a
material parameter of the dimension 1/s (the coefficient of fluidity), as a factor of proportionality. Integra-
tion of the damage evolutionary equation over time from an initial time to the critical time results in a lower
bound for the critical time. The bound depends on the maximal value of the hardening parameter possible
under the given loading program. This value corresponds to the maximal admissible value of the damage
parameter, which is assumed equal to its critical value.

The method proposed in Druyanov and Roman (1997) provides an opportunity for direct determination
of a connection between maximal values of the hardening and damage parameters possible under the given
loading program. The maximal admissible value of the damage parameter is assumed equal to its critical
value. This assumption determines the maximal value of the hardening parameter, which, in turn, allows
determining a lower estimation of the critical time.

A structure saves its integrity, if it is prescribed work time (i.e., the time period during which the struc-
ture is to retain its integrity) is less then this estimation. This is a sufficient condition for integrity during the
prescribed work time, which was sought.

The problem of safe designing of structures subjected to cyclic loading is particularly in determining such
values of the structure parameters, which would guarantee integrity of the structure during a prescribed
work time period. This implies that the LCF lifetime of the structure elements should be not less than
the prescribed work time period. The findings obtained in the paper provide an opportunity of directly
resolving this problem like it was done for elastic—plastic damaged structures in Druyanov and Roman
(in press).

An example of application of the developed methods is given.
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The obtained findings can be extended to the case of materials with temperature-dependent properties
and thermo-mechanical loading by the method proposed in Druyanov and Roman (2005).

2. Constitutive material model

A model of elastic viscoplastic material like Perzyna (1974) with isotropic strain hardening and isotropic
viscoplastic damage is taken. The consideration is restricted by purely mechanical theory. Inertia forces and
temperature effects are neglected. The deformation is assumed to be small, so that the total strain tensor can
be decomposed into elastic (£°) and viscoplastic (gP) parts.

ge=2¢" + ¢ (1)

2.1. Thermodynamics

Let L denote the current (damaged) value of the elastic compliance tensor with its ordinary symmetry,
and C = L' denote the corresponding stiffness tensor. Either of these tensors can be taken for damage
variable.

Denote through y the isotropic strain hardening parameter, which is taken equal to the accumulated
viscoplastic deformation: 7 = (& : ép)l/ *. The local damaged Helmholtz free energy function is formulated
as

V(e 1, C) =1 : C: 5+ ¥y(y), (2)

where the first term in the right side represents the elastic part of the free energy, and the term ¥,(y) is the
free energy stored at the micro level due to strain hardening. As in Lemaitre (1992), the effect of damaging
on this part of the free energy is neglected.

The Clausius-Duhem inequality ¢ : & — ¥ > 0, where 6 denotes the nominal stress tensor, should be
valid for any thermo-mechanical process. Employing the Coleman and Gurtin (1967) arguments, we arrive

at the elastic strain—stress relation

c=C:¢ 3)
and the dissipative inequalities
oy
o: sp—a—;zzo, )
e€:C: £ <0. (5)

In order for inequality (5) to be valid for any deformation process, the quadratic function &°: C: &°
should not be positive. This condition is fulfilled, if all eigenvalues of the matrix C are not positive.
AsL:C=1,thene*:C: ¢ =—06:L: 6. Consequently,

6:L:6>0 (6)

i.e., the eigenvalues of the quadratic function ¢ : L : ¢ should not be negative (Druyanov and Roman,
2003).

Inequalities (5) and (6) are transformed into equalities only in the absence of damaging.

In the case of isotropic damage, the current (damaged) value of the elastic stiffness tensor C is defined as
C = (1 — 4)Cy,, where C,, denotes the undamaged value of C, and 4 is the isotropic damage parameter.
Analogously L = L,,,/(1 — 4). In this case, the above inequalities lead to the known conclusion that the rate
of damage parameter (4) is non-negative (Lemaitre, 1992).



4676 B. Druyanov, I. Roman | International Journal of Solids and Structures 43 (2006) 4673-4686

Denote through A, the critical value of the damage parameter. If 4 — A, the structure material fails at
the point under consideration.

2.2. Viscoplasticity

Let & = @(5,y) denote the yield function where 6 = ¢/(1 — 4) is the effective stress. It is assumed
&=@(0,%) < 0. The function @(s,y) is presupposed regular, convex, increasing in components of &,
decreasing in y up to the hardening saturation point (y,), which is a material parameter. It corresponds
to the ultimate tension point at the strain—stress diagram. Starting from this point, material softening
begins.

Yield surface (¢ = ®(:2;, 1) = 0) depends on two parameters: y and 4. A change in any of them causes
a homothetic transformation of the yield surface. A specification of values of y and 4 define the yield sur-
face and its diameter. Oppositely: a specification of the diameter defines a dependence between y and 4. So,
the yield surfaces form one-parametrical family of surfaces with the diameter of yield surface (D(x, t)) as the
parameter. The diameter is a known function of 4 and y, decreasing in 4 and increasing in y. Consequently,
the equation of yield surface in the nominal stress space can be recast as £ = @(e¢, D) = 0. The diameter
could be considered as the current doubled effective yield stress. The current values of the diameter are
determined by deformation process.

Take the yield condition of the Mises type, for example. Its equation in nominal stress may be written in
the form: @ = f{6) — (1 — A)k(y) = 0 where f{o) is a uniform function of the first rank in ¢, and «(y) is an
yield stress. The quantity (1 — A)k(y) is proportional to the diameter of the Mises cylinder. So the yield sur-
face equation can be rewritten in the form: @ = f{6) — aD = 0 where « is a number.

The rate of viscoplastic strain is assumed to be proportional to the access of the yield function value over
Zero:

, _ 08 1 a(EY

- _ = —

& =v(&) %6 2' o6 )
where (&) =1(&+1¢]) = (6)7 fgi §0> 0 and v is the coefficient of fluidity—a material parameter of the

dimension 1/s.

Any level yield surface ¢ = @,(a5, ¥) = 0, where « is a positive number, can be obtained from the yield
surface ¢ = @(6, z) = 0 by a similarity transformation. Because, the yield surface is assumed to be convex,
all level surfaces are also convex.

Rate of the viscoplastic strain (¢") at a point of the space & is normal to the level surface ¢ = ®(ha,7) =0
passing through this point.

Let 6 = 6/(1 — 4) denote a safe effective stress: ¢ = @(a, x) < 0, i.e., the corresponding stress point is on
the yield surface or in the interior of it, and 6 = 6/(1 — 4) be an active stress such that ¢ = &(s,%) > 0, i.e.,
the stress point corresponding to ¢ is in the exterior of the yield surface. The value of the damage parameter
A is assumed actual. Then, in virtue of the convexity of the level surfaces, the inequality holds
(6 —6): & > 0. The equality takes place if and only if & = 0.

Transferring to the nominal stress tensor provides

(6-6): & > 0. (8)

The unloading and subsequent reloading processes are assumed purely elastic. Therefore, during these
processes, the elastic stiffness tensor C and the elastic compliance tensor L save their current (damaged)
values, which they had at the start of unloading. Consequently, the stress tensor can be decomposed as

czcE—i—p, (9)
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where 6"(x, 1) represents the current purely elastic response of the structure under consideration to the cur-
rent boundary conditions, and p(x, ¢) is the current tensor of residual stress. A way of directly computing
the function 6%(x, 7) accounting for the change in elastic moduli due to damaging is considered in Section 6.
The ordinary decomposition of the actual strain tensor is valid

e=¢b +&° 4¢P, (10)

where £F is the elastic strain corresponding to ¢%:eF = L:6%, £ is the elastic part of the residual strain ten-
sor: £° = L:p, and &P is its viscoplastic part.

2.3. Shakedown

The rate of viscoplastic strain is proportional to the excess of the yield function over zero. Due to this
property, the notion of shakedown is readily extended to the adopted material model. Suitable shakedown
conditions are given in Section 7.

2.4. Damage

The damage process is assumed coupled with the process of viscoplastic deformation, i.e., the damage
process starts and ceases simultaneously with the start and cessation of the viscoplastic deformation
process.

It is assumed that no residual strain and stress are induced by damage.

The rate of damage growth is defined by the equation, which is similar to the one proposed by Ju (1989).

A:Vg(}va)H(}'f)v (11>

where H () is the step function: H(jy) =1, ify > 0,H () =0, ify < 0; and g(y, 4) is a given material func-
tion increasing with its arguments.
According to (11),

A= v/rg(x,A)dt. (12)

3. Sufficient condition of survivability

If shakedown condition is fulfilled, then the deformation process reaches eventually a stationary stage, at
which damaging ceases. However, the structure can fail at the transient stage of deformation process, if the
damage parameter reaches its critical value (4.). Nevertheless, it is possible to believe formally that the
deformation process continues after this point.

Let the damage parameter reaches its critical value (4.) at the transient stage. In the opposite case, the
structure will not fail. Let #. denotes the corresponding time instant named as the critical time. Correspond-
ing value of y is denoted by y,,,. This is the maximal value of the hardening parameter, which it can acquire
until the structure fails, i.e., for the period from ¢, to 7., where ¢, denotes the initial time instant of defor-
mation process. The duration of time period ¢y, < 7 < ¢, is the low cycle fatigue lifetime. Since at this period
% < Jm, then

te
4. < V/ 8 (s> Ac) dt = vg (), Ac) (1 — t0). (13)

to
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Consequently,

A
—  <Lto— 1. 14
8 40 1
The structure saves its integrity during the designed work time period (¢, — to), if t,, is less than the crit-
ical time f.: t,, < t.. This condition is fulfilled, if

4.
o o< Vg(XmaAc). (15)

This is a sufficient condition of local integrity during the work time period #,, — #, in the case, where the
damage parameter reaches its critical value at the transient stage.

Condition (15) could be named as the condition of structure survivability.

A way of directly computing y,, is considered in Section 5.

The overall integrity of the structure for the period #,, — 7, will be observed, if inequality (15) is fulfilled
for the minimal value of the fraction in its right side over all the structures.

4. Features of post-adaptation stage of deformation process

If the condition of shakedown (Section 7) is satisfied, and if the opportunity of failure is ignored, then,
formally speaking, the deformation process reaches eventually the stationary (post-adaptation) stage where
no irreversible deformation and damage occur. Time-independent values of the residual stress tensor ps, the
damage parameter 4, the hardening parameter y,, and the diameter D, are the characteristics for this stage.
These values and the corresponding yield surface are named as the limit ones. Because of this circumstance,
the nominal stress ¢ is used for further considerations.

At the post-adaptation stage, the actual representative stress point in the stress space ¢ reaches the yield
surface repeatedly, but the stress does not induce a progress in damaging and viscoplastic deformation, and
the limit yield surface does not change. This is possible, if the stress path does not exit out of the yield sur-
face, and either some parts of the stress path o(x,?) are placed on the yield surface, or the stress path
touches it at some isolated points. In particular, this is valid at the time instants 7* corresponding to the
beginning of unloading. These time points will be named as the departure instants.

At these instants, the stress satisfies the equation of the yield surface. Thus, the following equation is
valid:

E=¢= @(G(X’ t*)aDs(X)) = 0. (16)

Because of the cyclic nature of loading, during the post-adaptation stage, the points of local maximum of
the yield function are situated either in the interior of the yield surface or on it. According to the assump-
tion, ¢ <0 in the first case and £ = 0 in the second case. Hence, the departure points are the points of abso-
lute maximum of the yield function with respect to .

Employing the decomposition o(x, 1) = 6"(x, ) + p(x), Eq. (16) can be reduced to the form

(x) = &' (x) = (6" (x, 1) + py(x), Ds(x)) = 0. (17)
The function
6(X, 1) = GE(X’ 1) + py(x) (18)

determines the limit stress path at the point x of the structure in the stress space ¢ at the post-adaptation
stage.
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5. Estimation of the maximal value of hardening parameter

For a wide class of loading, the features of the post-adaptation stage provide an opportunity to derive
directly, i.e., without a detailed investigation of the deformation process, a connection between the possible
limit values of damage, hardening parameter, and residual stress. The connection allows obtaining an upper
estimate for the values of the hardening parameter possible for the given loading program.

Hereafter, in this section, only the post-adaptation stage of deformation is considered, so that the sub-
script s’ is omitted.

Due to cyclic nature of loading, stress path (18) has a number of apexes, which are specified by the load-
ing program. As ¢ is assumed a non-decreasing function of the stress tensor components, the local and
absolute extremums of the yield function correspond to the apexes of the stress path.

The local extremums of the yield function ¢ are located in the interior of the yield surface and are neg-
ative. The yield function reaches the absolute maximum values which are equal to zero at the departure
points, i.e., these maximum values of ¢ are equal to each other. This situation can be modeled, if one con-
siders that the absolute maximums of the yield function to be minimal. As a result, the following specifi-
cation of Eq. (17) is arrived (Druyanov and Roman, 1997)

En(x) = mpin max ¢(x) = rnpin max d(c"(x, t) + p(x),D(x)) = 0. (19)

This min—max problem should be resolved for fixed values of x and D.

Residual stress tensor p has to satisfy the equilibrium equations and zero boundary conditions: p-n =10
at the part of the solid surface S, where tractions are prescribed, n is the unit vector of the external normal
to S, and a-b=ab,

A direct way of computing ¢F is considered in Section 6.

Remark. The equilibrium equations can be satisfied by introducing the stress functions (Timoshenko and
Goodier, 1951), which are defined by the min—-max problem in the left of (19). For example, in the case of
plane strain and the Mises yield condition the min—-max problem is reduced to a boundary-value problem
for a non-uniform hyperbolic equation in partial derivatives of the second rank (Druyanov and Roman,
2002).

A solution of the min-max problem in the left side of (19) provides us with the values &,(x), pm(X), and
t*(x) as functions of D. In turn, Eq. (19) determines the diameter of the yield surface &,, = 0, which will be
denoted D,,. Besides p,, determines a certain position of the stress path ¢ = 6(x, 7) + pm(X) with regard to
the yield surface.

Take the yield condition @ = f{6) — D = 0, for example. The value of f{e) is determined by the solution
of Eq. (19): In turn, it determines the diameter of the yield surface.

The quantity p,, gives a minimal value to the function max . As min max ¢ is equal to zero, any change
in p,, provides a positive value to max¢, i.e., it shifts the stress path in such a way that at least one of its
apexes falls outside the limit yield surface. Hence, if at least two apexes of the stress path are placed at the
yield surface, then they coincide with the ends of the chord of the maximal length, i.e., with the ends of yield
surface diameter. As there are no apexes outside the yield surface, these two apexes are also the ends of the
diameter of the stress path. Hence, the solution of Eq. (19) defines the limit yield surface in such a way that
its diameter coincides with the diameter of the stress path. Thus, the solution of Eq. (19) provides us with
the minimal value of the diameter of the yield surface possible for the prescribed loading program.

Eq. (19) defines D and consequently, 4 as a function of y:4 = ¢(y). Because ®(, 7) is an increasing func-
tion of 6 = 6/(1 — 4) and a decreasing function of y at the interval yo < y < yn, Eq. (19) defines 4 at this
interval as an increasing function of y. At the interval y > y;, this function is a decreasing one. Thus, the
value of A corresponding to the hardening saturation point (y,) is the maximal value of the damage
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parameter possible under the prescribed loading program. This value is denoted as 4y,. Obviously, its value
depends on the loading program.

If 4y, < 4., then the deformation process under consideration reaches the stationary stage successfully,
i.e., without failure at the point under consideration. This is a sufficient condition of shakedown. In the
opposite case (4, > 4.), local failure is possible.

Suppose 4y, > A.. If the shakedown condition is satisfied, then, formally speaking, the deformation pro-
cess reaches the stationary stage irrespective of whether the damage parameter has acquired the value of 4,
or not. During deformation, the damage parameter increases. Its maximal safe value is 4.. Thus, the max-
imal safe value of y possible under the given loading program is determined by Eq. (19) at 4 = 4.. Denote
this value as y,,. There are two values of y corresponding to 4. in the case 4, > 4., which correspond to
ascending and descending branches of the curve 4 = ¢(y). The relevant value should be taken from the
ascending part of this curve, because 4 is an increasing parameter. In this case y,, < yp.

6. Direct way to compute the purely elastic response

Eq. (19) depends on the function ¢"(x, *), which represents the actual (damaged) purely elastic response
of the structure at the departure instants to the prescribed loading program. This function is determined by
resolving the elastic boundary-value problem for the structure under consideration at the time instants #*
for the corresponding boundary conditions, and Hook’s law &* = L:6™ where L is the current (damaged)
value of the elastic compliance tensor: L = Lo/(1 — A4). The values of A4 and y at ¢t = r* could be calculated
by means of detailed investigation of the entire deformation process. To avoid this way, a direct method to
calculate 6%(x, *) is considered below (Druyanov and Roman, 2002).

At the departure instants 7 = * the function 6"(x, t*) + p(x) satisfies the equation of yield surface. This
feature gives us a chance to obviate a detailed investigation of the deformation process, and to compute
o%(x, *) by means of resolving a boundary-value problem for the system of the elasticity equations supple-
mented with the equations C = Cy(1 — 4(x)) and (19). This system of equations may be named as the basic
system. Its solution provides the values of *(x), pm(x) and Dy, aside from o¢"(x, r*).

A solution of the min—max problem in the left of (19) determines the value of p such that the stress
6 = 6" + p is safe for any value of time, i.e., it is either in the interior of the yield surface, or on it. Accord-
ing to the shakedown condition, this is a sufficient condition of shakedown (see Section 7).

7. Shakedown condition for viscoplastic structures

The Koiter theorem extended to the structures of elastic viscoplastic material is formulated in a classic
manner: if there exists a time independent virtual residual stress field p(x) such that the virtual decompo-
sition 6(x, ) = 6(x, ) + p(x) satisfies the yield inequality

(D(%,x(x, t)) <0 (20)

for ¢ = 0, then the total energy dissipation is bounded.

Hence, the virtual stress path 6(x, ) = 6"(x, + p(x) should be either in the interior of the current yield
surface, or touch it.

Boundedness of the total dissipated energy can be taken for the necessary and sufficient condition of
shakedown (Debordes and Nayroles, 1976).

In the process of deformation, the current yield surface changes its sizes due to hardening and damaging.
All current yield surfaces are similar to each other. It is supposed that initially the diameter of the yield
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surface grows (the stage of hardening), and then it decreases (stage of softening). The maximal value of the
diameter depends on the prescribed loading program and could be found by a detailed analysis of the defor-
mation process. The only yield surface, whose diameter is known in advance, is the initial yield surface.

The above theorem demands determinating the virtual residual stress p. Eq. (19) gives a regular way to
determine it. Note that Eq. (19) is valid at ¢ = *. At these time instants, the yield function reaches its max-
imal value equal to zero. Hence, the values of the yield function for ¢ # ¢* are negative. As mentioned in the
previous section, Eq. (19) determines the yield surface of the minimal diameter (min yield surface), which is
possible for the prescribed loading program. Thus, the stress path determined by Eq. (19) is in the interior
of the minimal yield surface, otherwise touches it. Consequently, the stress path is also in the interior of
subsequent yield surfaces.

This assertion is valid not only at the stage of hardening but also at the part of the softening stage adja-
cent to the point of maximal hardening until the current yield surfaces embrace the min one.

This conclusion provides an opportunity to formulate a sufficient condition of shakedown as follows. If
the min yield surface is in the interior of the initial yield surface, or coincides with it, then the structure
under consideration will shake down to the prescribed loading program. This condition can be expressed
by the inequality:

Dmin < D0> (21)

where D, denotes the diameter of the min yield surface and D, denotes the diameter of the initial yield
surface.

Obviously, in the above shakedown condition, the initial yield surface plays the role of a sanctuary
(Nayroles and Weichert, 1993).

The right side of inequality (21) is a given quantity. The value of the left side is determined by Eq. (19).

As applied to the Mises yield surface @ =fle) — (1 — A)x(y)=0: Doy= (1 — Ap)k(%0), Dmin =
fi6%(X, %) + pm(X)). So, in this case, the shakedown condition is expressed by the inequality:
A6E(x, %) + pm(X)) < (1 — Ag)k(x0), where Ao(x) and y0(x) are the given initial values of the damage and
hardening parameters correspondingly, and p.,(x) is the residual stress determined by Eq. (19).

8. Direct safe design

The objective of safe structural design as applied to structures of viscoplastic material is to determine the
interval of safe values of a design parameter f(x), i.e., such values, for which the structure in design both
adapts itself to the given loading program and saves its integrity during the prescribed work time period z,,.
The method proposed below is an extension of the method developed in Druyanov and Roman (in press) to
adopted material model structures.

If § is of geometrical nature, the boundary conditions and, consequently, the function ¢ depends on it.
If § is a material parameter, then not only 6= but also the yield function depends on it. Also f can be a
complex parameter representing a set of parameters.

The possible values of § have to satisfy a priori requirements arising from the nature and service condi-
tions of the structure. These requirements can be expressed by a set of inequalities. For example, a geomet-
rical parameter cannot be negative. The interval of admissible values of § can be found by comparing the
safe interval for f with the above-mentioned a priori inequalities.

It is assumed that the loading program is prescribed. In the case where the loading program is unknown
and only the bounds for variation of applied loads are given, the proposed method provides a necessary
condition for shakedown and integrity during the prescribed work period .

The condition of shakedown is expressed by inequality (19)/(20), which depends on 8. The quantities y,
and f; also depend on f. Therefore it is possible, in principle, to satisfy condition of integrity (15) and

v
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shakedown condition (19) by a proper choice of . The satisfaction of these inequalities guarantees the
integrity of the structure during the prescribed time period.

The algorithm of designing can be sketched as follows. In the first place, the condition of integrity (15)
has to be specified. To that end, the boundary-value problem for the basic system of equations (the system
of elasticity equations supplemented with equations C = Cy(1 — 4) and (19)) has to be resolved under
A= A, and the given boundary conditions. The solution of this system provides the maximal value of
the strain hardening parameter: y = y,. This value of y depends on f, so that the condition of survivability
poses a bound for . Then the shakedown condition issuing from inequality (19) should be derived and the
corresponding bound to f be established. Comparing this bound with the bound derived from the condition
of integrity and a priori conditions, we obtain the interval for admissible values of 3, for which both the
shakedown and local integrity conditions hold.

In order to derive the conditions of overall integrity, the local bounds for f§ through the structure should
be found and compared.

9. Example

Consider the structure shown in Fig. 1. The structure consists of three rods of the same cross-section area
S and the same material. The lengths of the rods are in the relation: /y = fl, = 5, p < 1. The structure is
loaded by a variable force P(¢) ranging in the interval —P; < P < P,, Py < P,, where P(t) is a given function
of time. The rods can experience only uniaxial tensile/compressive deformation.

The structure is to keep its integrity during a prescribed work time period ¢,,. Correspondingly, three
sorts of problems can be considered. Firstly, if all the geometrical and loading parameters are given, then
there is the problem to determine safe work time period ¢,,. Secondly, if z,, is prescribed, the problem is to
determine safe bounds to loads p; and p, in such a way that the structure keeps its integrity during the per-
iod ty. The third problem is the problem of geometrical design: to determine safe length of rod 1 (i.e.,
parameter f3), for which the structure keeps its integrity during the period z,, for given values of L, =/3
and P 15 P 2.

v

Fig. 1. The structure.
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Due to symmetry, the strains and stresses in rods 2 and 3 are identical: ¢, = 3,0, = 03, and flg; = ¢,. The
stresses in the rods satisfy the equilibrium equation: o; + 20, = p, where —p; < p(f) < p2, p = P(1)/S,
p1=Pi/S, p»=P)/S.

It is assumed that the damage process is coupled with the process of viscoplastic deformation, i.e., the
damage can develop only, if the viscoplastic deformation process is in progress. It is also assumed that the
damage process starts simultaneously with the process of viscoplastic deformation, i.e., the damage thresh-
old is small enough.

In the elastic undamaged state o, = p/(1 + 2p), o, = pB/(1 + 2p).

Suppose that rods 2 and 3 remain elastic, whereas rod 1 experiences viscoplastic deformation accompa-

nied by damage. The yield condition of the rod material is taken in the form: @ = |6| — k() = 0. Otherwise
® = [o] — (1 = A)x(y) =0, (22)

where ¢ is the nominal stress, y is the hardening parameter, and «(y) is the yield stress of undamaged
material.

During the damage process, the current value of the unloading Young’s modulus of rod 1 is
E| = Ey(1 — A) where Ej is its initial value. At the same time, according to assumption, the Hooke moduli
of rods 2 and 3 keep their initial values £, = E3 = Ej. So that, after the damage process in rod 1 has started,
the purely elastic response of the structure to the current value of the load p(7) is 6F = o5 (1 — 4)/B = cp,
where ¢ = (1 — 4)/(2f + (1 — 4)) and 4 is a current value of the damage parameter. Thus, the nominal
stress in rod 1 can be represented as oy = ¢p + p where p is the residual stress in rod 1.

Now, the yield function of rod 1 can be rephrased as @ = |cp + p| — (1 — A)x(y) where p, y and 4 are
actual.

At the post-adaptation stage y and 4 do not vary. Under fixed values of 4 and y, the function ¢ = ®
reaches its absolute maximum value under p =p,, if ¢p + p = 0 and max @ = @, =¢p, + p — (1 — A)x(y).
However, if c¢p+ p <0, the yield function reaches its absolute maximum value under p =p; and
max ¢ = &, =cp; — p — (1 — A)x(y). The function max @ is minimal, if ¢; = &,. This equation provides
p = —c(p> — p1)/2. The corresponding value of the yield function is &, = min max ® = (p; + p»)c/2 —
(1 = A)r(y).

Assume for simplicity that the deformation process starts from the undamaged state. According to Sec-
tion 4, to obtain the shakedown condition, it is necessary to set 4 = y =0 in @, and require {,, < 0. This
operation provides the inequality (p; + p»)/2(28 + 1) — x(0) < 0 that leads to the following shakedown
condition

1% <k(0)28+1) = B,. (23)
Eq. (19) issues in the connection between limit values of A and y: 4 =142 — ’;‘Jf )2 The maximal pos-

sible value of the hardening parameter () is derived from (19) by setting 4 = A..

o 122! 1
m= ("5 =) (24)

where y = ¢(y) denotes the function inverse to the function y = x(y).
Condition of survivability (15) provides an upper bound to the safe value of designed work time period:

tw < Ac/vE (Y, 4c), (25)

where g(y,4) is a given material function. ¢ : & < -:(6 —6): & See (11).
This inequality resolves all three possible problems. First of all it determines an upper bound to the
structure lifetime duration. Further, the bounds to p;, p, and f§ can be determined.
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Take for simplicity that g(y,4) = y. Then
4.

gy < ———— . (26)
V(l’) (P] ;Pz 2ﬁ+}—AC)
Otherwise
# < (1= Ao+ 2B)(Ae)vty) = Bo. 27)

Inequalities (23) and (27) should be valid simultaneously. Their comparison provides us with a wanted
condition of shakedown and integrity during the prescribed work time ¢,,. Eventually, the condition de-
pends on the given parameters: if ff; < ff,, then condition (23) holds; in the opposite case (27) is valid.

Inequality (25) provides also a possibility to resolve the problem of geometrical design. Again take for
simplicity g(y,4) = y. In this case

ﬁ pl+p2 _liAC

2
4c(Ac/vty) 2 (28)
Condition of shakedown (23) provides
ptp 1
> —=. 29
B 4(0) 2 (29)

Similar to the previous case the lower bound to f# depends on the given parameters. As inequalities (28)
and (29) should hold simultaneously, the inequality resulting in larger values of f§ has to be considered.
But it should be remembered that according to the given condition it has to be f < 1.

Appendix A. Boundedness of dissipated energy (Koiter’s inequality)

The boundedness of dissipated energy can be taken as a necessary and sufficient condition of shakedown
(Debordes and Nayroles, 1976).

If P is not equal to zero identically, then the constitutive inequality (8) is strict. Following Koiter, it can
be transformed into the form

o: PP <

—06): & Al
m— 1 (6 0') € Y ( )
where m > 1 is a number.

Integrating this inequality gives

T T
W(T)://O G: spdtdw<%//0 (6 —6): ePdtdow, (A2)

where w is the volume of the structure, and 7 is an arbitrary time instant.
Consider the integral

A=§/Q(p—f>):L:<p—f>)dQ>0, (A3)

where p(x,t) is the actual residual stress and p(x) is a time-independent residual stress such that the stress
6 = ¢t + p is safe: @(6,y) < 0.

Notice that if the virtual stress 6(x,t) is safe with respect to the initial yield surface, then it is safe with
respect to subsequent yield surfaces, until the initial yield surface is located in the interior of current yield
surfaces, otherwise coincides with one of them. This condition is fulfilled not only at the stage of material
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hardening where current yield surfaces encompass the preceded ones, but also at a part of the material soft-
ening stage adjacent to the hardening saturation point. In other words, inequality (8) holds not only for
ascending branch of the strain—stress curve where the material hardens, but also for a part of the descending
branch where the material softens.

The derivative of 4 with respect to time is equal to

i=[b: Lio-pdo+s [6-: Lip-pdo

As € =L:p, then p = £¢° — L : p. After obvious transformations, 4 can be reduced to the form

A:—/(«—&): épda)—%/p: L: pdw+%/f): L: pdo.

Integrating this equality over time provides

A(T)_A(O)z—/OT/w(c—a): épdtdcu—%/oT/wp: L: pdido
%/OT/Qp; L: p'drdo. (A4)

Comparing (A2) with (A4), the following inequality is obtained:

w(T) 2m_1//p L: pdwds < ((0)—A(T) 2m_1//p L: pdrdo.

Taking into account inequalities (6) and A(7T) > 0, the above inequality can be reduced to the form

m
<
W(T) < —4(0) 2m_1//p L: pdrdo. (AS)

It follows from (AS) that the total dissipation () is bounded independently on the magnitude of 7. This
is the required result.
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